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Abstract

This research method tutorial article provides a step-by-step guidance on how to carry out linear
mixed-effects modeling using R. The guidance was through an example of exploring incidental
vocabulary learning under captioned viewing. The data structure is carefully examined to
determine an appropriate modeling approach. Both a full model and a simplified model are
compared to identify any significant differences in their performance. Subsequently, the optimal
model is selected based on the evaluation results. The chosen model is then thoroughly explained
and interpreted to shed light on incidental vocabulary learning under captioned viewing. The
study encompasses model evaluation and visualizations of the prediction results, providing a
comprehensive assessment of the model’s reliability and effectiveness. The aim is to demonstrate
the practical application of mixed effects models, showcasing their value in real-world research
scenarios for researchers in applied linguistics.
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1 Incidental Vocabulary Learning from Captioned Viewing

Captioned viewing plays a crucial role in enhancing the incidental vocabulary learning of English as a
Foreign Language (EFL) learners. This is attributed to the concurrent presentation of both visual and
verbal elements, fostering effective information processing and recall, ultimately leading to potential
incidental vocabulary acquisition (Teng, 2021). Numerous empirical studies underscore the positive
impact of captions on vocabulary learning. For instance, Teng (2022), employing MANCOVA,
corroborated the significance of captions in incidental vocabulary learning. Notably, learners exposed to
captions outperformed their non-captioned counterparts in terms of word form and meaning recognition
and recall. Factors intrinsic to the learners, such as proficiency level and aptitude, are also instrumental
in influencing incidental vocabulary learning from captioned videos. Teng’s subsequent study in 2023,
utilizing Two Conditional Linear Mixed Models (CLMM) analyses, delved into captioned video genres
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and repeated viewing, while considering working memory and vocabulary knowledge. The outcomes
endorsed the distinctive impact of various video genres on incidental vocabulary learning, with a notable
preference for the comedy genre. Repetition, specifically repeated viewing, demonstrated significance
solely in the immediate form recognition test. Moreover, complex working memory emerged as a
significant factor in delayed meaning recognition and recall. The breadth of vocabulary knowledge and
comprehension also emerged as influential factors affecting incidental vocabulary learning performance.
Teng and Cui (2023, 2025), employing mixed effects modeling, compared the incidental learning of
single words and collocations under different captioning conditions, taking into account vocabulary
knowledge and working memory. The findings supported the efficacy of full captions in enhancing both
single word and collocation learning. However, the study emphasized the importance of considering
individual differences, including working memory and prior vocabulary knowledge.

While existing research provides substantial evidence supporting the role of captions in vocabulary
learning, some results remain inconclusive. The present study seeks to provide further insights into the
domain of incidental vocabulary learning from captioned viewing by introducing a tutorial on Linear
Mixed Effects Modeling (LMEM) as an increasingly popular method for analyzing incidental vocabulary
learning from captioned videos. By incorporating LMEM into data analysis, researchers can better
account for complex dependencies within the data, avoid violating the independence assumption present
in multiple regression, and consequently, enhance the reliability of their findings in assessing incidental
vocabulary learning from captioned viewing. In this way, the present study contributes to advancing
the methodological framework for studying vocabulary acquisition in EFL learners through captioned
videos.

2 What is Linear Mixed Effects Modeling (LMEM) and Why Is It Important?

LMEM offers a solution to the limitations of ANOVAs and regression analysis. LMEM allows
researchers to examine the condition of interest while simultaneously taking into account variability both
within and across participants. This approach is more robust, as it handles missing data and unbalanced
designs more efficiently. Consequently, the removal of a single observation has a much smaller effect on
the analysis (Brown, 2021).

One major advantage of LMEM is the possibility to accommodate continuous predictors, eliminating
the need for categorizing or binning continuous variables. This enables researchers to model nonlinear
relationships between predictors and outcomes, thereby preserving statistical power (Snijders & Bosker,
2012). Moreover, the fitted model provides coefficient estimates that indicate the magnitude and direction
of the effects of interest, essential to an understanding of different predictors (Baayen, 2010).

LMEM can also be extended to handle a variety of response variables, such as categorical outcomes,
via generalized linear mixed-effects models. This versatility is particularly useful for researchers working
with diverse data types. Operating within this framework eases the transition to Bayesian analysis,
further expanding the methodological options available for researchers (Brown, 2021).

Unlike ANOVAs, which tend to focus on categorical “significant versus nonsignificant” results,
LMEM encourages a more nuanced understanding of the data. LMEM is more appropriate for analyzing
complex data sets of having different research groups and considering different individual differences
or factors. Hence, LMEM is a versatile and powerful alternative to ANOVAs and multiple regression,
particularly when analyzing data with multiple trials and nested observations. By accommodating
continuous predictors, handling missing data, and providing coefficient estimates for effect magnitudes
and directions, LMEM offers a more comprehensive analytical tool for researchers dealing with intricate
data structures.
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3 How to Carry Out LMEM?

Carrying out LMEM involves several basic steps.

Data Preparation: Organize your data in a suitable format, with one row per observation and appropriate
columns for the dependent variable, independent variables (fixed effects), and grouping variables (random
effects).

Choose a Software: LMEM is typically conducted using specialized statistical software such as R (with
packages like Ime4) or Python (with libraries like statsmodels or ImerTest). In this tutorial, I chose R
software that supports LMEM and is familiar to researchers in applied linguistics.

Model Specification: Formulate the LMEM equation by defining the fixed effects (independent variables)
and random effects (grouping variables).

Fit the LMEM: Use the selected R software to fit the LMEM to the data.

Model Assessment: Evaluate the model fit by examining diagnostic plots, residual plots, and goodness-
of-fit statistics.

4 Introducing the Dataset

In the following, I will begin by presenting the data that has been utilized as an illustration for LMEM.
The data and R script used to generate the models described in this article are available via OSF, at
https://ost.i0/9qwsy/

4.1 Participants

The participants were 49 first-year English major students at a university in China, ranging from 18.1
to 19.7 in terms of age. The participants were gathered and then randomly allocated to one of the two
conditions, i.e., caption viewing groups (n=25), and a control group that only took the tests. Their first
language was Mandarin Chinese, and they were learning English as a foreign language. The participants
described themselves as intermediate learners, e.g., the B1-B2 level based on Common European
Framework of Reference (CEFR).

4.2 Video Selection

The selected video was a documentary about Ancient World. The video was selected from YouTube
(https://www.youtube.com/watch?v=MI171gPw-X3E). The captions were checked and added through
Amara. This video was about top ten enigmas of the ancient world. The topic, which was about a world
full of mystery, folklore and legend, was selected on a pilot of 10 English major students. The students
watched the video and agreed that the topic was quite interesting and that the content was suitable for
their L2 learning. The video is one hour, six minutes, and 27 seconds long. The spoken language was
in line with the written language. VocabProfile (https://www.lextutor.ca/) was adopted to determine the
lexical profile. The script contained 8,039 running words. The 1,000-, 2,000-, and 3,000-word families
covered 73.67%, 81.20%, and 89.01% of all running words in the script, respectively.
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4.3 Target Words

We selected a total of 46 words as test items. Based on VocabProfile (https://www.lextutor.ca/),
approximately 56% of all target words were beyond the 3,000 word level. Those words might be
unknown to the participants.

4.4 Vocabulary Test and Scoring

The assessment of incidental vocabulary learning was performed through a meaning recognition test.
This test was administered two times: pretest, and immediate posttest.

This meaning recognition test included 46 items. Each item had five options, with a correct meaning,
three distractors, as well as an “I don’t know this word” option. The “I don’t know” option was to reduce
learners’ wild guessing. The participants were required to choose one option after hearing the target
word. Each correct answer was given 1 point, while each incorrect answer was given 0 points. The
maximum score for each test part was 46 points.

4.5 Research Questions and Data Analysis

The research question concerns whether captioned viewing led to a greater increase in incidental
vocabulary learning. LMEM using the Ime4 package was performed (Bates & Maechler, 2010) in
the R language and environment (R Core Team, 2020). Compared with ANOVA and ANCOVA,
LMEM provides advantages in including groups (control vs. experimental groups) and time (pretest
and immediate posttest) in a single model while considering any potential variance due to individual
differences through random effects. The fixed effects were group, time, and the interaction between
group and time. The random effects were participants. Group and time were categorical variables.

4.6 Details and Procedures for Data Analysis

In the following, LMEM was used to evaluate the effects of conditions (Control and Caption viewing)
on the performance of meaning recognition, while modeling the variation within participants (Pid) and
items (item).

In all the analyses described below, I will use a dummy coding (also known as treatment coding)
scheme, where the control condition is set as the reference level and is therefore coded as 0, while the
treatment condition is coded as 1. Thus, in the mixed-effects model, the regression coefficient associated
with the intercept represents the estimated average score under the control condition (when the mode
= 0), and the coefficients related to the mode effect represent how the average score changes under the
treatment condition (when the mode = 1). We can also choose to use the Caption viewing condition as
the reference level, in which case the intercept represents the estimated average meaning score under
the Caption viewing condition (when the mode = 0), and the mode effect would indicate the change in
this estimate under the control condition (when the mode = 1). Changing the coding scheme, whether by
altering the reference level or completely switching to a different coding scheme (e.g., sum or deviation
coding, which involves coding groups as -0.5 and 0.5 or -1 and 1, respectively, so that the intercept
corresponds to the grand mean), will not change the model fit; it will only change the interpretation of
the regression coefficients (but often lead to misconceptions about interactions).

The left side of Table 1 displays the first six rows of the required format for the data: ungrouped long
format. For a useful tutorial on how to organize data in this format, I recommend the open textbook “R
for Data Science” (Chapter 12.3.1) by Wickham and Grolemund (2017) and the tidyverse collection of R
packages (Wickham et al., 2019). If you are tracking your own data, make sure it is in long format, where
each row represents a separate observation (i.e., do not aggregate across participants or items). Note that
in the first half of the table, each row among the first six corresponds to different items presented to the
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same participant (Pid). In contrast, for score probability analysis, the data frame would include 2*46
rows per participant (number of time points * number of words), with only one mode per row, and the
values in the column of the meaning recognition score reflect the average score for all words presented to
that individual under the specified condition (right side of Table 1).

Table 1
The First Six Rows of the Required Format for the Data
> head(m_data)

> head(data2) Pid trt time meaning_m
Pid item trt time me

1 101 Accuse Control pre 101 cControl pre 0.0435
2 101 Acoustic control pre 101 Control post 0.0435
3 101 Alignment Control pre 102 Control pre 0.109
4 101 Besiege Control pre 102 Control post 0.109
5 101 Brutal Control pre 103 Control pre 0

6 101 Coalition Control pre 103 cControl post 0

Overall Control (24) Caption viewing (25) p

2254 948 177 771
Pre meaning 323 (14.3) 93 (8.4) 230 (20.0) <0.001
Post meaning 625 (27.7) 84 (7.6) 541 (47.0) <0.001

The reason why mixed effects models are called “mixed” is because they simultaneously model both
fixed and random effects. Fixed effects represent population-level (i.e., average) effects that are expected
to persist across different experiments. Condition effects are typical fixed eftects as they are expected
to operate in a predictable manner across different samples of participants and items. In fact, in my
example, the mode will be simulated as a fixed effect because I expect an average relationship between
the mode and meaning scores that would reoccur if the same experiment was conducted with different
samples of participants and items.

Fixed effects model the average trend, while random effects model the extent of variation in these
trends at different levels of grouping factors, such as participants or items. Random effects consist of
dependent data points within groups, where the observed values within a group come from the same
higher-level population (such as individual participants or items) and are included in the mixed effects
model to account for the fact that the behavior of specific participants or items may deviate from
the average trend. Since random effects are discrete units sampled from some populations, they are
inherently categorical. Therefore, if you want to determine whether an effect should be modeled as fixed
or random, and it is essentially continuous, it should be noted that it cannot be modeled as a random
effect and must be treated as a fixed effect. In our hypothetical experiment, participants and words are
modeled as random effects because they are randomly sampled from their respective populations, and we
want to account for the variability within these populations.

Including random effects for participants and items can address the issue of non-independence that
often plagues multivariate regression, where some participants tend to score higher than others, and
some items tend to receive higher scores than others. These random deviations from the average score
are referred to as random intercepts. For example, the model may estimate an average score of 0.3 under
certain conditions, but including random intercepts for each participant allows the model to estimate a
fixed deviation for each participant from the average score. Therefore, if a participant tends to achieve
particularly high scores, their individual intercept may be shifted upwards by 0.5 (i.e., the estimated
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intercept would be 0.8). Similarly, including random intercepts for individual items allows the model
to estimate the deviation of each item from the fixed intercept, reflecting that some words are generally
easier to score than others. In contrast, in multivariate regression, the same regression line (including
intercept and slope) applies to all participants and items, resulting in less accurate predictions compared
to mixed effects regression, and often larger residual errors. Therefore, in mixed models, the fixed
intercept estimates represent the average intercept, while the random intercepts allow for deviations from
this average value for each participant and item.

Another source of variation that can be explained by mixed effects models is that variables
simulated as fixed effects may actually have different effects on different participants (or items). In
this example, some participants may show very small differences in scores between the control and
treatment conditions, while others may show substantial differences. Similarly, some words may be
more influenced by the pattern than others. To model this type of variation, I will include random slopes
in the model specification. For example, in this tutorial, the model may estimate an effect of 0.321 for
the Caption viewing mode on meaning, indicating that participants, on average, show a 0.25 increase
in the word meaning recognition scores under the Caption viewing condition compared to the Control
condition. However, one word may be strongly influenced by the mode (e.g., a score difference of 0.475
between Control and Caption viewing), while another word may be only weakly influenced by the mode
(e.g., a score difference of 0.05 between Control and Caption viewing). These individual deviations
from the average pattern effect are simulated through random slopes (note that simple mean differences
described here are represented as slopes in the regression equation).

Patterns that arise within the context of fixed and random effects can be confusing, but it is important
to remember that if an effect is assumed to persist across different participant samples, it is considered
fixed. In this paper, the pattern is modeled as a fixed effect because we are modeling the joint influence
of the pattern on the scores of participants and items. However, considering that participants are a
random sample from the population of interest, the modal effects within participants represent a subset
of possible interactions between the pattern and participants. In other words, the pattern itself is not
a random effect, but its interaction with participants is random, and including random slopes for the
pattern allows the model to estimate deviations of each participant from the overall (fixed) trend. (For
a description of the distinction between fixed and random effects and when researchers may genuinely
want to model participants as fixed effects, see Mirman, 2014).

One common question that arises is why seemingly systematic effects are referred to as random
effects if the mixed effects model provides intercept and slope estimates for each participant. The answer
lies in the fact that although an effect may be consistent within specific individuals (e.g., a participant
may consistently respond with higher scores, showing a higher susceptibility to the pattern than the
average level), the source of this variation is unknown and therefore considered random. If you find
the use of the term “random” confusing, considering synonymous terms such as intercepts (or slopes)
varying by participant (or item) may be helpful. However, given that these effects are most commonly
referred to as random intercepts and slopes, I use that terminology here.

Before proceeding to the implementation in R, it is necessary to address another issue regarding the
random effects structure in mixed effects modeling: determining which random slopes are reasonable
in the research design. Considering the example again, I model the scores for words as a function of
their difficulty. The difficulty of words is manipulated within participants. However, due to the inherent
variability in the difficulty of words, it is a between-item variable. Since including item-specific random
slopes describes the varying influence of related predictor variables across items, we cannot model
the effect of word difficulty on specific items because each word has only one difficulty level; in other
words, we cannot include item-specific random slopes. Conversely, if the predictor of interest is a within-
item variable, I can include item-specific random slopes in the model, which would indicate that different
words may be influenced differently by the predictor. In short, random slopes by participant and by item
are applicable to within-subjects and within-items designs, respectively. Therefore, in the example of
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word difficulty, the random effects structure may include random intercepts for participants and items, as
well as random slopes by participant for word difficulty, but it cannot include random slopes by item for
word difficulty.

Because including item-specific random slopes for word difficulty is unreasonable in this example,
the random effects structure including random intercepts for participants and items, as well as random
slopes by participant for word difficulty, represent the largest random effects structure justified by the
design (see Barr et al., 2013; Matuschek et al., 2017). In cases where random slopes by participant and
by item are both reasonable, the mixed effects model can include the simultaneous effects of random
slopes by participant and by item (though it is important to note that the inclusion of random effects does
not necessarily imply it is always the best approach. I will further discuss this issue in the sections on
model building and convergence issues).

5 Examples and Implementation in R

First, the article utilizes R and R Studio, and the package used is Ime4.
To begin, install the necessary packages.

if (1(*Ime4” %in% installed.packages())) install.packages(“lme4’)
if (!(“tidyverse” %in% installed.packages())) install.packages(“tidyverse”)
if (I(“afex” %in% installed.packages())) install.packages(“afex’)

Importing Packages

library(Ime4)
library(tidyverse)

After downloading the data, import the data
data <- read.csv(“data.csv”)

This is the data transformed into a long format, and the table headers are as follows.
= head(data)

X Pid item trt time meaning
11 101 Accuse Control pre 0
2 2 101 acoustic Control pre 0
3 3 101 alignment Control pre 0
4 4 101 Besiege Control pre 0
5 5 101 Brutal Control pre 0
6 6 101 coalition Control pre 0

Looking at the table header, the Pid column represents the same participant for each row. Based on the
participant (Pid) and item, the next step is to examine the scores of each participant at various testing
phases under different conditions (Control, Caption viewing).

m_data=data %>%
group_by(Pid,trt,time) %>%
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summarise(meaning m=mean(meaning))
head(m_data)

We can observe the average scores of each participant at different testing phases under each mode.
> head(m_data)

# A tibble:
# Groups:

Pid

trt

<fct> <fct>

101
101
102
102
103
103

Control
Control
Control
Control
Control
Control

6 X 4
Pid, trt [3]

time meaning_m
<fct> <db 7>
pre 0.0435
post 0.0435
pre 0.109
post 0.109

Visualizing the raw data

Acoustic
Zigzag
Staggering
Incamation
Warship
Shipwreck
Equivalent
Brutal
Withstand
Verdict
Testament
Alignment
Thunderbolt
Revolt
Reenactment
llusion
Crushed
Combat
Symbolic
Explosion
Erosion
Besiege
Accuse
Vicinity
Resilient
Renaissance
Unreinforced
Speculate
Sacilege
Ransack
Perplexing
Mock
Elaborate
Decipher
Companion
Coalition
Distraction
Tribute

Fascinating
Execution
Enslaved
Depiction

Accuse
Staggering
Sculptor
Unreinforced
Withstand
Alignment
Besiege

Testament
Verdict
Saciilege
Fascinating
Explosion
Distraction
Brutal
Screw
Coaltion
Vicinity
Speculate
Reenactment
Companion
Execution

Zigzag
Resilient

Elaborate
Thunderbolt
Incamation
Erosion
Worship
Shiputeck
Renaissance
Depiction

0.5 1.0
Cumulate Meaning Recognition score for Control Group by item

05

time

. post

pre

time

. post
. pre

10 15

Cumulate Meaning Recognition score for Caption viewing Group by item
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122
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"
128
125
123
121
120
14
110
102
124
115
127
116
108
19
"r
126
101

118 time
106 | post
105 | . e
103 |
0.00 025 0.50 075 1.00
Cumulate Meaning Recognition score for Control Group by Pid
518 T ——
502 O ——
515 T ——
521 O
s0e T ——
505  ————
522 e ——
506 O —
51t T
519 ]
507  ————
517 e ——
503 T
508 T —
501 T
513 O —
510 T ———
512 e
509 e
523 O —
511 ] "
525 e — time
52t e —— B et
sar e bre
528 T

0.25 0.50 0.75 1.00
Cumulate Meaning Recognition score for Caption viewing Group by Pid

Encoding for the variable “trt” (mode): Control mode is encoded as 0, and Caption viewing mode is
encoded as 1.

data$trt=factor (data$trt,level=c(*““Control”,”Caption viewing”))

Encoding for the variable test time (“time” (pre, post) within the same mode:
Pre-testing is encoded as 0, and post-testing is encoded as 1.

data$time=factor(data$time, levels=c(“pre”,”post”))

For an experiment with a single independent variable and random intercepts but no random slopes for
(crossed) participants (Pid) and items (item), the basic syntax for a mixed-effects model is as follows:

Linear mixed-effects model:

Imer(outcome ~ 1 + predictor + (1|Pid) + (1iterm), data=data)

Generalized linear mixed-effects model:
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glmer(outcome ~ 1 + predictor + (1|Pid) + (1[iterm),
family=binomial(link="logit”),
data=data)

The parts within parentheses are the random effects, while the parts outside the parentheses are the fixed
effects. The vertical lines within the parentheses are called pipes, and they indicate that the effect on
the left of the pipe varies by the grouping factor on the right of the pipe. When the outcome variable is
a continuous variable following a normal distribution, a linear mixed-effects model is used. When the
outcome variable is not a continuous variable or does not follow a normal distribution, a generalized
linear mixed-effects model is used. In this case, the data follows a binomial distribution with values of
0 and 1 (Bernoulli distribution), so a generalized linear mixed-effects model with the family (gaussian)
specifying logistic regression is used.

In this example, the intercept (represented by 1) varies by two grouping factors in the experiment:
participants and items. Note that 1 is optional in the fixed effects part of the model specification because
the fixed intercept is included by default, but it is not optional in the random effects part because there
must be an indication of which effects are allowed to vary by each grouping factor (i.e., the region to
the left of the pipe cannot be left empty). I recommend using 1 to indicate the intercept in both the fixed
effects and random effects parts of the model specification to avoid confusion about when it needs to be
included.

Finally, the “data” parameter represents the name of the R object containing the data, and the “glmer”
part is the function used to fit the mixed-effects model (since you have installed the Ime4 package, you
have access to it).

So far, the model includes random intercepts but no random slopes. However, participants and items
may differ in their response to the manipulated condition. Therefore, I will fit a model that includes
random slopes for the mode by participants and by items. Not including random slopes would assume
that all participants and items have the exact same response to the mode, which is an unreasonable
assumption. While including both random intercepts and slopes by participants and items reflects the
maximum random effects structure supported by the design, the decision to include random slopes by
participants and items is also theoretically justified. Theoretical motivations should always be considered,
as blindly maximizing may lead to model non-convergence and loss of statistical power (Matuschek
et al., 2017). Note how the basic syntax for the model changes when we include slopes that vary by
participants and items in the random-effects structure.

Imer(outcome ~ 1 + predictor + (1+predictor|Pid)+(1+predictor|item), data=data)

glmer(outcome ~ 1 + predictor + (1+predictor|Pid)+(1+predictor|item),
family=binomial(link="logit’),

data=data)

Here, the part within parentheses represents the intercept (represented by 1). In this case, the intercept is
optional because its inclusion is implied by the presence of random slopes, but for clarity, it is included.
The predictor is represented by “+ predictor”. Both the intercept and predictor vary by participants (Pid)
and items (item). In simple terms, this syntax means “use the data provided to predict the outcome based
on the predictor and the random intercepts and slopes varying by participants and items.”

The above model includes only one predictor, but if a model includes multiple predictors, researchers
can decide which predictors can vary by participants or items. In other words, any fixed effect to the left
of the pipe (within the inner parentheses) can be included as long as it is reasonable in the experimental
design. For example, if we want to include a second predictor that varies by both participants and items
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but there is no theoretical motivation to include a random slope for the second predictor, or if it is
unreasonable to include a random slope for the second predictor given the experimental design (e.g., if
the second predictor varies between items), the syntax would be as follows.

Imer(outcome ~ 1+predictorl + predictor2 + (1+predictorl + predictor2|Pid) + (1+ predictorl|item),
data=data)

glmer(outcome ~ 1+predictor] + predictor2 + (1+predictor] + predictor2|Pid) + (1+ predictorl|item),
family=binomial(link="logit”),
data=data)

In the example we are going to use, the complete model (i.e., the model that includes all the fixed effects
of interest and all the theoretically motivated random effects) is specified as follows:

P
log(m|meaning = 1)

= Boo * trtconerol * timepre + Bo1 * trtcontrol * timepust +

B1o * trtcaption * timepre + Byy * trtcaption * timepust +
bjjic * Pidy + boyx itemy; + g€

Here, i represents the level of trt, j represents the level of test time, B_ij is the estimated coefficient for
the fixed effect, k is the participant identifier (Pid), I is the item identifier, b_lijk and b_2ijl and are the
random effects, and Pid ik and item_ijl are the levels of the random effects.

meaning_full. mod <- glmer(meaning ~ trt:time +
(1 + trt:time |Pid) +(1+trt:time |item),
family=binomial(link="logit’),
data = data)

Here, we are predicting the meaning recognition scores based on the fixed effects of intercept (1), trt
(Control vs. treatment condition), and test time. I included random intercepts and slopes for participants
(Pid = participant identifier) and items (item = stimulus). I used R to use the data frame named “data”.
This assigns a name to an object, which is a specific data structure stored in R, for future reference. Thus,
with this line of code, I created a model and gave it an intuitive name so that we know what this object
represents later on.

If you run this line of code in an R script, you may notice a warning message indicating that the
model failed to converge. Generalized linear mixed-effects models can be computationally complex,
especially when they have rich random effects structures, and convergence failure essentially means that
a good fit to the data cannot be found within a reasonable number of iterations attempting to estimate
model parameters. It is important not to report results from a non-converging model because the
convergence warning indicates that the model has not obtained reliable estimates and therefore cannot be
trusted.
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When a model fails to converge, as a researcher, you have several options. One is to report degrees of
freedom - the many seemingly harmless choices made during the research process that allow researchers
to find statistically significant evidence consistent with any hypothesis (Simmons et al., 2011). Generally,
you should leverage your specific domain knowledge and previous research to consider a priori which
random effects are theoretically important to include in your model (e.g., ask yourself, “Does it make
sense for the effect of the mode to vary by participant or item?”’) and only remove random effects as
a last resort when all other attempts to resolve convergence issues have failed. If you must remove
random effects, this decision should be documented and reported in your published manuscript and/or
accompanying code.

The first step in addressing convergence issues is to consider your dataset and how your model
relates to it, ensuring that your model has not been misspecified (e.g., including by-item varying slopes
for a predictor that does not actually vary within items). It is also possible that convergence warnings
arise from unbalanced data. If you have some participants or items with only a few observations,
the model may struggle to estimate random slopes, and these participants or items may need to be
removed to achieve convergence. While addressing convergence issues can feel tedious, remember
that these warnings serve as friendly reminders to think deeply about your data and not model blindly.
Assuming you have done these steps, the next step is to add control parameters to your model to patch
up estimated nuts and bolts. There are many control parameters, and depending on the source of the
convergence problem, some parameters may be more suitable or helpful than others. I suggest starting
with adjusting the optimizer, the method by which the model finds the optimal solution. The following
model specification is the same as above, except it includes a control parameter explicitly specifying the
optimizer.

> meaning_full.modl <- gimer(meaning ~ Control_post +Caption_viewing_pre+Caption_viewing
_bost+

+ (1 + Control_post +Caption_viewing_pre+Caption_viewing_po
st |Pid) +

+ (1+Control_post +Caption_viewing_pre+Caption_viewing_post
|item),

+ family=binomial (1ink="Tlogit"'),

+ control = glmercontrol(optimizer = "bobyga"),

+ data = data2)

boundary (singular) fit: see help('isSingular’)
> summary(meaning_full.modl)
Generalized Tinear mixed model fit by maximum 1ikelihood
(Laplace Approximation) [glmerMod]
Family: binomial ( logit )
Formula:
meaning ~ Control_post + Caption_viewing_pre + Caption_viewing_post +
(1 + Control_post + Caption_viewing_pre + Caption_viewing_post |
Pid) + (1 + Control_post + Caption_viewing_pre + Caption_viewing_post |
item)
Data: data2
Control: glmercControl(optimizer = "bobyga")

AIC BIC TogLik deviance df.resid
3878.7 4032.6 -1915.3 3830.7 4484

scaled residuals:
Min 1@ Median 3Q Max
-1.6788 -0.4555 -0.2739 -0.1503 6.0235

This model has converged, but how do I know which optimizer to choose? And what if the model
does not converge successfully with that optimizer? When it comes to selecting an optimizer, I highly
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recommend using the all_fit() function from the all_fit() package (Singmann & Kellen, 2019). This
function takes a model as input, re-fits the model with various optimizers, and lets you know which
optimizers produce warning messages. This package integrates well with lme4, so there is no need to
change the syntax of your model before running this function. Below is the relevant code:

> allFit(meaning_reduced.mod4)
bobyga : boundary (singular) Tit: see help('isSingular')
[oK]
Nelder_Mead : [OK]
himinbwrap : boundary (singular) fit: see help('isSingular')
[oK]
nloptwrap .NLOPT_LN_NELDERMEAD : houndary (singular) fit: see help('isSingular')
[0K]
nloptwrap .NLOPT_LN_BOBYQA : boundary (singular) fit: see help('isSingular')
[oK]
original model:
meaning ~ 1 + Caption_viewing_pre + Caption_viewing_post + (1 + Caption_viewi...
data: dataZ2
optimizers (5): bobyga, Nelder_Mead, niminbwrap, nloptwrap.NLOPT_LN_NELDERMEAD,nloptwra
p.NLO. ..
differences in negative log-Tikelihoods:
max= 0.000993 ; std dev= 0.00044
warning message:
In checkConv(attr(opt, "derivs"), optSpar, ctrl = control$checkConv,
Model failed to converge with max|grad| = 0.0626115 (tol = 0.002, component 1)

This output indicates that if there are convergence warnings or singular fits from the tested optimizers,
it suggests that there are issues with the estimation. Therefore, none of these optimizers should produce
reliable parameter estimates.

In this example, the model converged when I changed the optimizer, but that is not always the case.
Sometimes, you may need to address convergence issues in a different way. One option is to force
the correlation between random effects to be zero. Remember that in addition to estimating fixed and
random effects, mixed-effects models also estimate the correlation between random effects. If you are
willing to accept the possibility of zero correlation, this can reduce the computational complexity of the
model and potentially improve convergence of parameter estimates. However, please note that it is best
to perform likelihood ratio tests (described in detail in the next section) between different nested models
with and without the correlation or examine confidence intervals around the correlation to determine if it
is necessary to eliminate it.

To eliminate the correlation between two random effects in R, simply replace the ‘1’ in the random
effects specification with ‘0’. However, when you do this, the glmer() function no longer estimates
the random intercept, so you need to make sure to include it back in the model specification. If you
want to remove the correlation between the random intercept for participants and the random slope for
conditions, the code would be as follows:

rt_full. mod <- Imer(meaning~ 1 + trt+
(0 + trt|Pid) + (1|Pid)+ (1 + trt/item),
data = data2)

Using (1|PID) represents the random intercept, while (0+trt|PID) represents the random slope. By
separating them, we effectively remove the correlation between the two.
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Other approaches to address convergence warnings include increasing the number of iterations before
the model “gives up” searching for a solution (e.g., control = ImerControl(optCtr = list(maxfun = 1e9))),
centering or scaling continuous predictor variables (or applying sum coding to categorical predictor
variables), or using the control parameter control = ImerControl(calc.divs = FALSE) to remove some
derivative calculations that occur after the solution is found. I also recommend entering convergence in
the R console, which will open a help file providing additional suggestions for addressing convergence
warnings.

Finally, it is possible that the model fails to converge simply because the random effects structure is
too complex. In such cases, it is possible to selectively remove random effects based on model selection
techniques (Matuschek et al., 2017). However, it should be emphasized that simplifying the random
effects structure should only be considered as a last resort, and these decisions should be documented.
The random effects structure should have theoretical justification, so it is generally preferable to attempt
to maintain this structure unless all other attempts to address convergence issues have been unsuccessful.

Now that we have a model to work with, how do we determine if the pattern truly influences the
scores? This is typically done by comparing the model that includes the effect of interest (such as the
pattern) with a nested model that lacks that effect, using a likelithood-ratio test. If you obtain a small
p-value from the likelihood-ratio test, it indicates that the full model provides a better fit to the data.

When conducting a likelihood-ratio test on our example, we are essentially asking whether a model
that includes information about the presentation pattern is a better fit to the data compared to a model
that lacks that information. Here is how you can do this in R: first, you establish the reduced model that
lacks the fixed effect of the pattern but is otherwise identical to the full model (including any control
parameters used). Then, you perform the test using the ANOVA( ) function (which actually performs a
likelihood-ratio test rather than an analysis of variance):

> anova(meaning_full.modl,meaning_reduced.mod)
Data: data2

Models:

meaning_reduced.mod: meaning ~ 1 + (1 + Control_post + Caption_viewing_pre + Caption_vie
wing_post | Pid) + (1 + Control_post + Caption_viewing_pre + Caption_viewing_post | ite
m)

meaning_full.modl: meaning ~ Control_post + Caption_viewing_pre + Caption_viewing_post +
(1 + Control_post + Caption_viewing_pre + Caption_viewing_post | Pid) + (1 + Control_pos
t + Caption_viewing_pre + Caption_viewing_post | item)

npar AIC BIC TlogLik deviance| Chisq Df Pr(>Chisqg)
meaning_reduced.mod 21 3954.9 4089.6 -1956.5 3912.9
meaning_full.modl 24 3878.7 4032.6 -1915.3 3830.7(82.208 3 <« 2.2e-16 |v%%
Signif. codes: O “*=**' Q.001 *+*%' 0.01 ‘*’ 0.05 “." 0.1 °* * 1

The output includes the likelihood-ratio test statistic and the corresponding p-value. If the p-value is
below a chosen significance level (e.g., 0.05), it suggests that the inclusion of the pattern significantly
improves the model fit.

The small p-value in the “Pr(>Chisq)” column indicates that the model including the pattern effect
provides a better fit to the data compared to the model without the pattern effect. Therefore, the pattern
effect is significant. I have added a red box around the p-value, the %2 value (32.385) in the “Chisq”
column, and the degrees of freedom for the test (1, found in the “Chisq Df” column) because these three
values should be reported in your results section (I will come back to this point below).

Given that the full model includes three condition effects (patterns), testing can be relatively complex.
However, performing likelihood-ratio tests becomes cumbersome. This is because these tests need to be
conducted on nested models, so a reduced model lacking the effect of interest (sometimes referred to as
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the null model) needs to be established for comparison. Another issue with this approach is that although
the reduced models are only built for the purpose of comparison with the full model, it can be tempting
to examine these intermediate models and consider them as plausible candidates for the “best model” (i.e.,
engaging in stepwise regression without being aware). Here, a full model with two fixed effects (pattern
and test time) and a reduced model testing the significance of the pattern effect were established. In doing
s0, you may notice that the test time and pattern are both significant in both the reduced and full models.

> meaning_reduced.mod2 <- gimer(meaning ~ trt+
+ (1 + trt |Pid) +
- (1+trt |item),

+ family=binomial(link="logit"),

+ control = gimercControl(optimizer = "bobyqga"),

+ data = data2)

> anova(meaning_full.modl,meaning_reduced.mod2)

Data: data2

Models:

meaning_reduced.mod2: meaning ~ trt + (1 + trt | Pid) + (1 + trt | item)
meaning_full.modl: meaning ~ Control_post + Caption_viewing_pre + Caption_viewing_post +
(1 + Control_post + Caption_viewing_pre + Caption_viewing_post | Pid) + (1 + Control_pos
t + Caption_viewing_pre + Caption_viewing_post | item)

npar AIC BIC TlogLik deviance| Chisq Df Pr(>Chisq)
meaning_reduced.mod2 8 4077.9 4129.2 -2031.0 4061.9
meaning_full.modl 24 3878.7 4032.6 -1915.3 3830.7|231.22 16 <« 2.2e-16 *%%
Signif. codes: 0 f#**=*’ Q0,001 ***’ 0.01 “*’ 0.05 “.” 0.1 ° ’ 1
> meaning_reduced.mod3 <- glmer(meaning ~ time+
+ (1 + time |Pid) +
+ (I+time |item),
+ family=binomial(link="Togit"),
+ control = glmerControl(optimizer = "bobyga"),

data = data2)

boundary (singular) fit: see help('isSingular’')

> anova(meaning_full.modl,meaning_reduced.mod3)

Data: dataz

Models:

meaning_reduced.mod3: meaning ~ time + (1 + time | Pid) + (1L + time | item)

meaning_full.modl: meaning ~ Control_post + Caption_viewing_pre + Caption_viewing_post +

(1 + Control_post + Caption_viewing_pre + Caption_viewing_post | Pid) + (1 + Control_pos

t + Caption_viewing_pre + Caption_viewing_post | item)
npar AIC BIC 1logLik deviance| chisq Df Pr(>Chisqg)

meaning_reduced.mod3 8 3982.4 4033.7 -1983.2 3966.4

meaning_full.modl 24 3878.7 4032.6 -1915.3 3830.7|135.68 16 <« 2.2e-16 #%%

Signif. codes: 0 f***’ Q0,001 %%’ 0.01 “*’ 0.05 ‘.’ 0.1 ° ' 1

+

Fortunately, the afex package has another convenient function that allows you to completely avoid this
approach. The mixed ( ) function takes a model specification as input and when the parameter method
= ‘LRT" is included, it performs likelihood-ratio tests for all fixed (not random) effects in the model.
Importantly, you will not see reduced models constructed solely for obtaining p-values, thus reducing the
temptation for unintentional p-hacking. This function is particularly useful when your model has multiple
fixed effects, but here’s how you can implement this function in this example and what the output looks
like (note that the x2 value is different from what we obtained using the ANOVA( ) function because the
two functions perform likelihood-ratio tests):
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> mixed(meaning ~ 1+Control_post +Caption_viewing_pre+Caption_viewing_post+

+ (1 + Control_post +Caption_viewing_pre+Caption_viewing_post |Pid) +
+ (1+Control_post +Caption_viewing_pre+Caption_viewing_post |item),

+ family=binomial(1link="logit"),

+ control = gimerControl(optimizer = "bobyga"),

+ data = dataz,

+ method="LRT")

Contrasts set to contr.sum for the following variables: Pid, item

Numerical variables NOT centered on 0: Control_post, Caption_viewing_pre, Caption_viewing_post
If in interactions, interpretation of lower order (e.g., main) effects difficult.

Fitting 4 (g)Imer() models:

[boundary (singular) fit: see help('isSingular')

.boundary (singular) fit: see help('isSingular')

.boundary (singular) fit: see help('isSingular')

.boundary (singular) fit: see help('isSingular')

Mixed Model Anova Table (Type 3 tests, LRT-method)

Model: meaning ~ 1 + Control_post + Caption_viewing_pre + Caption_viewing_post +

Model: (1 + Control_post + Caption_viewing_pre + Caption_viewing_post |
Model: Pid) + (1 + Control_post + Caption_viewing_pre + Caption_viewing_post |
Model: item)
Data: dataz
Df full model: 24
Effect df Chisq p.value
1 Control_post 1 0.69 .407

2 Caption_viewing_pre 1 18.35 #®%% <.001
3 Caption_viewing_post 1 75.53 #®%% <.001

signif. codes: 0O “*%=%’ Q0,001 ‘**’ Q.01 “*’ 0.05 ‘+’ 0.1 * " 1

The likelihood-ratio test results for the full model indicate that Control post is not significant. To
compare the variance between the full model and the model without Control post, we can remove
Control_post from the full model and perform the variance comparison.

> anova(meaning_full.modl,meaning_reduced.mod3)
Data: data2
Models:
meaning_reduced.mod3: meaning ~ 1 + Caption_viewing_pre + Caption_viewing_post + (1 + Caption_vie
wing_pre + Caption_viewing_post | Pid) + (1 + Caption_viewing_pre + Caption_viewing_post | item)
meaning_full.modl: meaning ~ 1 + Control_post + Caption_viewing_pre + Caption_viewing_post + (1 +
control_post + Caption_viewing_pre + Caption_viewing_post | Pid) + (1 + Control_post + Caption_vi
ewing_pre + Caption_viewing_post | item)

npar AIC BIC TogLik deviance cChisq Df Pr(>Chisq)
meaning_reduced.mod3 15 3861.5 3957.7 -1915.8 3831.5
meaning_full.modl 24 3878.7 4032.6 -1915.3 3830.7 0.8254 ¢ 0.9997

The reduced model does not show a significant difference compared to the full model, and it has a lower
AIC. Therefore, the reduced model is selected as the optimal model. Once the optimal model is chosen,
the fixed effects and random effects of the model can be interpreted.

6 Interpreting Fixed and Random Effects

Comparing the likelihood ratio tests between our full model and the reduced model indicates that the
pattern effect and detection time are significant. However, it does not provide information about the
direction or magnitude of these effects. So, how can we assess whether the caption viewing condition
leads to higher or lower scores? And how can we gain further insights into the variability among different
participants and items that our model estimates?
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To answer these questions, we need to examine the output of the model using the summary()
command. This output consists of two main sections. The upper section provides information about the
random effects, while the lower section contains information about the fixed effects. The following code
block implements the summary() command and displays a brief output related to interpreting the fixed
effects:

> summary(meaning_reduced.mod3)
Generalized 1inear mixed model fit by maximum Tikelihood (Laplace Approximation) ['gImerMod’]
Family: binomial ( logit )
Formula: meaning ~ 1 + Caption_viewing_pre + Caption_viewing_post + (1 +
Caption_viewing_pre + Caption_viewing_post | Pid) + (1 +
Caption_viewing_pre + Caption_viewing_post | item)

Data: dataz
Control: glmercControl(optimizer = "bobyga")
AIC BIC logLik deviance df.resid
3861.5 3957.7 -1915.8 3831.5 4493

scaled residuals:
Min 1Q Median 3Q Max
-1.6780 -0.4550 -0.2741 -0.1536 6.3655

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7920 0.1955 -14.283 < 2e-16 **%
Caption_viewing_pre 1.2322 0.2469 4.991 6.02e-07 =**%
Caption_viewing_post 2.6632 0.2224 11.973 < 2e-16 #%%
Signif. codes: 0 “***' 0.001 ‘**' Q.01 ‘*’ 0.05 ‘.’ 0.1 * " 1
> bl

Estimate std. Error z value Pr(>|zl|) p_m L U
(Intercept) -2.792 0.195 -14.283 0 0.058 0.048 0.069
Caption_viewing_pre 1.232 0.247 4.991 0 0.774 0.728 0.814
Caption_viewing_post 2.663 0.222 11.973 0 0.935 0.920 0.947

To recap, I used a virtual coding scheme with a control condition and pretest as the reference level.
Therefore, the intercept represents the estimated average score under the control condition. As there was
no significant difference between the control pretest and posttest, the reduced variables were collapsed
into the intercept term. The pattern effect 1 represents the adjustment of the intercept for the pretest
under the Caption viewing condition, while the pattern effect 2 represents the adjustment of the intercept
for the posttest under the Caption viewing condition. Therefore, the estimated average score under the
control condition is 0.058, while the average score under the Caption viewing condition for the pretest is
estimated to be 0.774, and for the posttest is estimated to be 0.935.

Now let us focus on the random effects section of the output.

Random effects:
Groups Name variance Std.Dev. Corr

Pid (Intercept) 0.2922 0.5405
Caption_viewing_pre 0.2820 0.5311 -1.00
Caption_viewing_post 0.0589 0.2427 -0.64 0.65

item (Intercept) 0.6387 0.7992
Caption_viewing_pre 1.3250 1.1511 -0.73
Caption_viewing_post 0.6449 0.8031 -0.86 0.98

Number of obs: 4508, groups: Pid, 49; item, 46
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The “Groups” column lists the grouping factors (along with the residuals) that appear on the right side of
the model specification. The “Name” column lists the effects grouped by each factor (i.e., the intercept
and modal slopes that appear on the left side of the model specification). Each of these random intercepts
and slopes has an associated variance (and standard deviation) estimate, which tells you the degree to
which scores for specific stimuli and participants vary around the fixed intercept and slopes.

For example, the standard deviation of the random intercepts (highlighted in red in the above output)
suggests that scores for specific items vary by approximately 0.5405 around the average intercept of
-2.792. Similarly, the standard deviation of the random slopes for participants in the Caption viewing
group (highlighted in red in the above output) indicates that the estimated slope for the pretest varies
by approximately 0.531 around the average slope of 1.232. The estimated slope for the posttest among
participants in the Caption viewing group varies by approximately 0.243 around the average slope of
2.663. Thus, the difference in slopes between pretest and posttest decreases, and the slope at posttest is
more than twice as high as the slope at pretest, indicating that Caption viewing is highly beneficial for
meaning recognition and improves convergence in participants’ scores (slopes become steeper).

On the other hand, the slope at pretest is relatively flat and has a large variation. Individuals who are
above 1 standard deviation from the mean have very steep slopes (indicating a difference of about 1.1
in the probability of obtaining the best and worst scores of 0.75). The coef() function in Ime4 provides
individual intercept and slope estimates for each participant and item, which not only helps to make the
concept of random intercepts and slopes more concrete but also helps identify outliers. The code and
brief output below show the estimates for the first four items and participants and the last four items and

participants:

> b2=coef(meaning_reduced.mod3)

> b2
$Pid

(Intercept) Caption_viewing_pre Caption_viewing_post
101 -3.083 1.5184 2.747
102 -2.450 0.8963 2.565
103 -3.649 2.0745 2.909
105 -3.649 2.0745 2.909
524 -3.267 1.6965 2.720
525 -3.267 1.6965 2.720
527 -3.413 1.8393 2.737
528 -3.559 1.9821 2.755
Sitem

(Intercept) Caption_viewing_pre Caption_viewing_post

Accuse -2.431 2.183681 3.054
Acoustic -1.1%94 -0.155663 1.442
Alignment -2.144 1.190405 2.443
Besiege -2.540 1.609538 2.785
Vicinity -2.850 1.114062 2.618
withstand -2.206 1.369605 2.556
worship -1.939 -0.828161 1.315
Zigzag -1.672 -0.423094 1.448

This output indicates that the estimated intercept for the word “Acoustic” is -1.194 (probability of score
0.233), the estimated slope for Caption viewing at pretest is -0.156 (probability of score 0.461), and the
estimated slope for Caption viewing at posttest is 1.442 (probability of score 0.809). These values are
similar to the estimated fixed intercepts (-2.792, probability of score 0.058) and slopes (1.232, 2.663,
probability of score 0.774 and 0.935). The participant section of the output shows that participants with
ID numbers starting with 1 only appear in the control group, while those starting with 5 only appear in
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the Caption viewing group. For example, participant 103 has an estimated intercept of -3.649 (probability
of score 0.025) and estimated slopes of 2.0745 and 2.909 (probability of score 0.888 and 0.948) for
pretest and posttest in the Caption viewing condition. This indicates that this individual’s scores are lower
than the average level in the control condition but higher than the average level in the Caption viewing
condition, and the effect of the mode is smaller than the average level.

Please note that although we only looked at the estimated values for eight items and participants,
it is evident that the variation in intercepts and slopes among different participants is smaller than the
variation among different items. This observation is consistent with the standard deviations. Specifically,
the standard deviations for random intercepts (0.541) and slopes (0.531, 0.243) across different
participants are smaller than the standard deviations for random intercepts (0.799) and slopes (1.151,
0.803) across different items.

Although the assumed focus of the study is on fixed effects, the estimation of random effects itself
is interesting and informative, and in some cases, it can provide insights into the key research question.
Therefore, I argue that the core of the discussion lies in the random effects rather than the fixed effects.

The last piece of information in the random effects output relates to the correlations between random
effects. In the “Corr” column, it is shown that the correlation between the random intercepts of items and
the random slopes of Caption viewing at pretest items is -0.73, while the correlation between the random
intercepts of participants and the random slopes of Caption viewing at pretest for individual participants
is -1. This means that items that are more difficult to score in the control condition tend to have steeper
(more positive, more steep) slopes. The correlation between the random slopes of Caption viewing at
pretest and posttest is 0.98 for items, and 0.65 for participants. This suggests that the convergence of
vocabulary scores in the Caption viewing condition is higher than the convergence of scores among
participants.

Finally, it should be noted that a model may encounter estimation issues (i.e., produce unreliable
parameter estimates), and there may be no warning messages in the R console. The random effects
section of the output contains some clues that can help you identify when this happens. One clue comes
from the random effects correlations, which are set to -1.00 or 1.00 when they cannot be estimated.
Another clue comes from the variance estimates, which are set to 0 when they cannot be estimated (i.e.,
when the variance and correlation parameters cannot be estimated, they are set to their boundary values;
Bates et al., 2015). Although random effects correlations of -1.00 or 1.00 are usually accompanied by
warnings of “singular fit,” this is not always the case. Therefore, it is crucial to examine the random
effects section of the model output to ensure smooth estimation.

Due to the different participants in different treatment groups, the issue of “singular fit” arises in the
above analysis. To address this, a model that considers only random slopes for participants and ignores
random intercepts is adopted. The reduced model is still preferred over the full model. The fixed effects
part of the model is similar to the previous reduced model.

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7920 0.1955 -14.283 < 2e-16 #**%
Caption_viewing_pre 1.2322 0.2469 4.991 6.02e-07 #%¥
Caption_viewing_post 2.6632 0.2224 11.973 < 2e-16 ***
Signif. codes: 0 f#**%’ Q0,001 ‘**’ 0.01 **' 0.05 “.” 0.1 * * 1

Correlation of Fixed Effects:
(Intr) Cptn_wvwng_pr
Cptn_vwng_pr -0.807
Cptn_vwng_ps -0.834 0.805
optimizer (bobyga) convergence code: 0 (0OK)
boundary (singular) fit: see help('isSingular')



24

International Journal of TESOL Studies 8 (3)

In the random effects part of the model, it can be observed that individual differences have a relatively
small impact on the scores, and the main source of score variation comes from the items, especially in the
Caption viewing group for the pre-test and post-test. The standard deviation is greater than 1, indicating

significant variability in scores.

Random effects:
Groups Name
Pid (Intercept) 0.2922

Caption_viewing_pre 0.2820
Caption_viewing_post 0.0589
item (Intercept) 0.6387
Caption_viewing_pre 1.3250
Caption_viewing_post 0.6449

0.

0.
0.
0.
1.
0.

5405
5311
2427
7992
1511
8031

Variance Std.Dev. Corr

-1.00
-0.64

-0.73
-0.86

Number of obs: 4508, groups: Pid, 49; +item, 46

predict meaning recognition score by Participants for Control

1.00-

0.00-

pfe pdst

There is no significant difference between the pre-test and post-test scores for participants in the control
group. In the Caption viewing group, there is a large individual difference in scores during the pre-test,
but this difference becomes smaller during the post-test. Individuals who find the task easier have a
flatter slope, while those who find it more challenging have a steeper slope. This suggests that captioned
viewing is effective for all participants, with a stronger individual effect observed for those who struggle

with the task.

predict meaning recognition score by item for Control

1.00-

0.75-

0.50

0.25-

0.00-

pfe pdst

1.00-

0.00-

0.65

0.98

predict meaning recognition score by Participants for Caption viewing

plle

pdst

predict meaning recognition score by item for Caption viewing

1.00-

0.75-

0.50

0.00-

plle

pdst
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In the control group, there is no significant difference between the pre-test and post-test items. The items
that were easy to score in the pre-test remain easy in the post-test, while the items that were difficult to
score in the pre-test remain difficult. The scores are concentrated, with only one item being easy to score
with a probability of 0.25.

In the Caption viewing group, there is a larger gap between the easy and difficult items during the
pre-test, but their probabilities are both above 0.25. During the post-test, the score differences become
smaller and are concentrated above 0.75.

Overall, Caption viewing can reduce the score differences among individual participants as well
as the score differences among items. It greatly improves the probability of scoring difficult items and
benefits individuals who initially struggled with scoring. The impact of Caption viewing on item scores
1s much greater than its impact on individual scores.

> summary(meaning_reduced.mod4)Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [
glmerMod]
Family: binomial ( logit )
Formula: meaning ~ 1 + Caption_viewing_pre + Caption_viewing_post + (1 +
Caption_viewing_pre + Caption_viewing_post | Pid) + (1 +
Caption_viewing_pre + Caption_viewing_post | item)
Data: data2
Control: glmerControl(optimizer = “bobyqa”)

AIC  BIC logLik deviance df.resid
3861.5 3957.7 -1915.8 3831.5 4493

Scaled residuals:
Min 1Q Median 3Q Max
-1.6780 -0.4550 -0.2741 -0.1536 6.3655

Random effects:

Groups Name Variance Std.Dev. Corr

Pid (Intercept) 0.2922 0.5405
Caption_viewing_pre 0.2820 0.5311 -1.00
Caption_viewing_post 0.0589 0.2427 -0.64 0.65

item  (Intercept) 0.6387 0.7992
Caption_viewing_pre 1.3250 1.1511 -0.73
Caption_viewing_post 0.6449 0.8031 -0.86 0.98

Number of obs: 4508, groups: Pid, 49; item, 46

Fixed effects:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7920 0.1955 -14.283 < 2e-16 ***
Caption_viewing_pre 1.2322 0.2469 4.991 6.02e-07 ***
Caption_viewing_post 2.6632 0.2224 11.973 < 2e-16 ***

Signif. codes: 0 ****0.001 *** 0.01 ** 0.05 0.1 “" 1

Correlation of Fixed Effects:
(Intr) Cptn_vwng_pr
Cptn_vwng_pr -0.807
Cptn_vwng_ps -0.834 0.805
optimizer (bobyqga) convergence code: 0 (OK)
boundary (singular) fit: see help(‘isSingular’)
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7 What Options Are There?

Collecting data in response to multiple trials is a common practice in experimental research. In such
scenarios, it is important to choose the appropriate statistical analysis method. Repeated measures
analyses of variance (ANOVAs) are often used in these cases. Standard ANOVAs and multiple
regression violate a crucial assumption of many statistical tests: the independence assumption. This
assumption stipulates that observations in a data set must be independent or should not be correlated.
However, having multiple measurements taken on the same subject can result in the data not meeting
this assumption. For example, in a reaction time study with multiple measurements, reaction times
within a given participant and within an item will certainly be correlated. Thus, repeated measures
ANOVAs are preferrable to standard ANOVAs and multiple regression in accounting for repeated
measurements on the same subject.

However, repeated measures ANOVAs have some limitations. Although they can model either
participant- or item-level variability, they cannot simultaneously take both sources of variability into
account. This means that observations within a condition must be collapsed across either items or
participants, causing a loss of important information about variability within participants or items,
which in turn reduces statistical power (Barr, 2008). Repeated measures ANOVAs also deal with
missing observations via listwise deletion, which can reduce sample size, leading to inflated standard
error estimates and reduced statistical power (Enders, 2010). Furthermore, repeated ANOVAs assume
that the dependent variable is continuous, and the independent variables are categorical. Experiments
with categorical outcomes or continuous predictors require alternative techniques or adjustments,
potentially reducing statistical power and making it difficult to model nonlinear relationships between
predictors and outcomes (Royston et al., 2005). Finally, while repeated ANOVAs indicate whether an
effect is significant, they do not provide information about the magnitude or direction of the effect,
such as individual coefficient estimates for each predictor indicating growth or trajectory. Thus, when
experimental studies involve subjects with a hierarchical structure, linear mixed-effects modeling
(LMEM) is preferred over repeated measures ANOVAs.

8 What Issues Might There be and How Can We Resolve Them?

Model Advantages: LMEMs are more flexible, and they are more flexible compared to traditional linear
models. The basic assumptions of the model are as follows: (1) The residuals can deviate from a normal
distribution, (2) The variance can be homogeneous or heterogeneous, and (3) The samples are not
independent (there are repeated measurements and internal correlations).

Disadvantages: The models can become overly complex, time-consuming, and may encounter
convergence issues or warnings. It is difficult to perform model selection due to its complexity.

Overcoming Limitations: Efforts can be made to remove unrelated factors, eliminate non-significant
variables, and simplify the model to achieve optimization. The model considers both the average effect
of fixed factors on the dependent variable and the individual differences due to random factors. Thus,
LMEM increases the difficulty of interpretation but makes the model more scientifically reasonable. It
is challenging to explain the impact of fixed and random factors on the dependent variable. To address
the limitations, researchers can adopt the following strategies: refining model specification, increasing
the sample size, applying data transformation, identifying outliers, and exploring alternative modeling
approaches, such as using generalized linear mixed-effects models (GLMM) for non-normally distributed
data or hierarchical Bayesian models for complex data structures.
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9 Concluding Remarks

In recent years, LMEM has gained significant popularity as a valuable tool for analyzing experimental
data. These models offer distinct advantages due to the possibility to effectively capture and account
for the variability that exists not only among participants but also among the items being studied.
This comprehensive modeling approach sets them apart from other commonly employed statistical
techniques, granting them greater flexibility and enhanced analytical power.

One key strength of LMEM is the capacity to handle missing observations in a robust manner.
They possess the capability to handle data with missing values, allowing researchers to retain valuable
information even in the presence of incomplete datasets. Additionally, these models seamlessly
incorporate continuous predictors, enabling researchers to incorporate a wide range of relevant factors
into their analyses.

A major benefit of LMEM is the ability to provide estimates of the average effects of predictors
on outcomes, while also allowing for the examination of effects specific to individual participants and
items. By accounting for both participant-specific and item-specific variations, researchers gain a more
nuanced understanding of the underlying factors influencing the observed outcomes. Furthermore,
LMEM can easily be extended to encompass categorical outcomes, providing researchers with a
versatile framework for modeling various types of dependent variables commonly encountered in
applied linguistics research.

The primary objective of this tutorial article is to offer an accessible and practical overview of
LMEM to applied linguists who may be less familiar with this analytical approach. Through a detailed
case study focusing on the potential of incidental vocabulary learning under captioned viewing, I aim
to illustrate the practical application of mixed effects models in real-world research scenarios. The
article emphasizes the fundamental concepts of mixed effects models, highlights their advantages over
alternative analysis techniques, and provides step-by-step guidance on implementing these models
using the statistical programming language R. It is my hope that this article will serve as a valuable
resource, empowering researchers in applied linguists to leverage the full potential of mixed effects
models in their research endeavors.

Availability of data and materials

The data and R script used to generate the models described in this article are available via OSF, at
https://ost.i0/9qwsy/
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